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ABSTRACT

Random binary matrices have found many applications
in signal processing and coding. Rateless codes, for
example, are based on the random generation of code-
words by means of inner products between the data and
random binary vectors. But the usefulness of random
binary matrices is not limited to coding: they are also
well suited to distributed data storage applications. In
this context, random binary matrices with block-angular
structure are of particular interest because they allow co-
operative encoding and decentralized models for coding
and decoding, with a built-in degree of parallelism. Lin-
ear programming, LU factorization and QR factorization
are some of the problems for which the coarse-grain
parallelization inherent in the block-angular structure is
of interest. This paper studies one of the most impor-
tant characteristics of block-angular matrices, their rank.
More precisely, we study the rank distribution and full
rank probability of rectangular random binary matrices
and block-angular matrices in GF(2).

Index Terms— Random matrices, random inner
products, block-angular matrices, rank, full rank prob-
ability, rank distribution.

1. INTRODUCTION

Rateless codes [1, 2] are a class of error correcting codes
useful for channels in which the loss rate is not known
a priori or is prone to large unpredictable variations. In
these codes, the codewords are built from random linear
combinations of message symbols.

This randomness allows the generation of a virtually
unlimited number of codewords for a given message.
The receivers use any subset of codewords with suffi-
ciently many elements to perform decoding. The over-
head is not large: there are decoding algorithms able to
recover k symbols of the original message from k(1 + ε)
codewords, where ε is a small positive number (say, 0.1).

Similar ideas have been found useful to implement
redundant, reliable, distributed data storage. The idea

is to encode the file data as codewords and distribute
the codewords across multiple servers. At any given
moment, the data can be recovered by using the code-
words stored on the servers that can be reached at that
moment. The use of rateless codes allows the storage of
codewords on an unlimited number of servers. Further-
more, the decoding process can accept and use code-
words coming from any server. The data retrieval per-
formance is not bounded by the slowest server: code-
words may come from any server, in any order.

We consider binary matrices with elements in GF(2),
the binary Galois field. A block-angular matrix has
structure

M =
[

D
R

]
(1)

where D is block-diagonal. The simplest case is

M =

⎡⎢⎢⎢⎢⎢⎢⎣
X 0
0 Y
W Z

⎤⎥⎥⎥⎥⎥⎥⎦ . (2)

For coding and data storage applications, the matrix M
must have more rows than columns. It has been shown
[3] that block-angular matrices yield results similar to
those that can be obtained with binary random matrices.
This is important because the block-diagonal D allows
the separation of problems involving M in a number
of sub-problems related to each of the block-diagonal
blocks. The rows in the block R represent coupling be-
tween the different problems.

This combination of characteristics makes block-
angular structure attractive for many applications. It
also allows the speedup of the decoding process with
multicore architectures while reducing the communi-
cation between the cores — or, in distributed storage
applications, the communication between servers.

Most of the problems that involve random matrices,
even sparse ones, do not exhibit block-diagonal or even
block-angular structure. However, given their useful
properties, there has been interest in algorithms [4, 5]
that explore their relations. The method to transform a
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sparse matrix to block-diagonal form [4] is a good ex-
ample (interestingly, the problem of rearranging binary
matrices in block-angular form was discussed as early
as 1971 [6]). To avoid the cost brought by such addi-
tional steps, it has been proposed [3] to directly generate
coding matrices with block-angular structure of size by
(n + e) × n. The matrix must have full column rank, but
it is easy to confirm experimentally that the full rank
probability in the block-angular case rapidly increases
with the number of excess rows e (see [3]).

In the remainder of this paper we study the proper-
ties of random block-angular matrices. We start by re-
viewing, in the next section, some of the key results con-
cerning the rank of random binary matrices over GF(2).
Then we discuss the rank of random block-diagonal and
random block-angular matrices. Our results include
a convenient and useful bound for the probability of
block-angular matrix to have full (column) rank, a re-
sult of immediate interest to the many algorithms and
applications that rely on these random matrices.

2. RANDOM BINARY MATRICES

Number of matrices with full rank. The number of
full rank matrices of size n × m, with n ≥ m, can be
determined as follows. Pick one column; it can be any
of the 2n − 1 possible nonzero vectors. Pick another
column; it cannot be equal to the previous one nor equal
to the zero vector. The are 2n−2 such vectors. In general,
column k + 1 cannot be equal to a linear combination of
the previously considered k columns. There are 2k such
linear combinations. Thus, the total number of full rank
n ×m matrices is given by

F(n,m) = (2n−1)(2n−2) · · · (2n−2m−1) =
m−1∏
i=0

(2n−2i). (3)

Full rank probability. If every n × m matrix is equally
likely to occur, the probability of selecting a matrix with
full rank is

P(n,m) =
F(n,m)

2nm

= (1 − 2−n)(1 − 2−n+1) · · · (1 − 2−n+m−1)

=

m−1∏
i=0

(1 − 2i−n).

This is illustrated in Fig. 1.
Rank distribution. The probability that a n × m matrix
has rank r is not difficult to find and it is known for
over a century. To count the matrices of rank r it is
necessary to count the matrices with an r-dimensional
range. Denote this number by N. Multiplying it by
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Fig. 1. Full rank probability for a few matrix sizes, as a
function of the number of rows. The exact probability
matches the empirical distribution well.

the number of distinct subspaces of dimension r yields
the required count. Dividing it by the total number of
matrices yields the probability.

To find N, note that a matrix of size n × m with an
r-dimensional column space linearly maps m-vectors to
r-vectors. Thus, N can be obtained by counting the num-
ber of r ×m matrices of rank r.

Under the hypothesis n ≥ m, we know that r is at
most m. Thus, the r ×m matrix of rank r must have full
row rank (linearly independent rows). There are 2m − 1
choices for row 0, 2m − 2 choices for row 1, and so on.
There are 2m−2r−1 choices for row r. N is therefore given
by

N = F(m, r) = (2m − 1)(2m − 2) · · · (2m − 2r−1) =
r−1∏
i=0

(2m − 2i)

(4)
To complete the task we need only count the number S
of r-dimensional subspaces of the parent n-dimensional
space, and multiply this number by N. It is easier to
count the number of bases: since r linearly indepen-
dent n-vectors yield a base for a r-dimensional sub-
space, there are F(n, r) bases. However, a single sub-
space can be generated by a number of distinct bases, so
F(n, r) must be divided by the number of bases of each
r-dimensional subspace. This number is simply F(r, r)
and so S = F(n, r)/F(r, r). The conclusion is that

F(n,m, r) =
F(m, r)F(n, r)

F(r, r)
(5)

where F(n,m, r) denotes the number of n × m matrices
of rank r. To find the probability P(n,m, r) it is only
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Fig. 2. Probability that a random matrix has a certain
rank, for a few matrix sizes. Both the exact probabil-
ity and an approximation found using simulation are
shown. The most likely rank of a square random matrix
of size n is n − 1 but random matrices with more rows
than columns are more likely to be of full column rank.

necessary to divide by the total number of matrices. The
result is illustrated in Fig. 2.

The number of subspaces of a space is also known
as the Gaussian binomial coefficient and it is related to
q-calculus. There is a beautiful and intriguing analogy
between the number of subsets of a set and the number
of subspaces of a space. The former is given by the
binomial coefficient, the latter by the Gaussian binomial
coefficient [7].

3. BLOCK-ANGULAR MATRICES

We now discuss the block-angular case. Consider first a
matrix of size (a + b + c) × (a + 1) such that

M =

⎛⎜⎜⎜⎜⎜⎜⎝
A 0
0 B
C D

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝L r

⎞⎟⎟⎟⎟⎠ (6)

where A is a × a, B is b × 1, C is c × a, D is c × 1. Thus, L
is (a + b + c) × a and r is (a + b + c) × 1.

The number of matrices L with linearly independent
columns is

F(a + c, a) =
a−1∏
i=0

(2a+c − 2i). (7)

Nontrivial combinations of the a columns of L lead to
vectors of the form ⎛⎜⎜⎜⎜⎜⎜⎝

x
0
y

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

where x and y are not both zero. To keep the matrix full
rank, the new column r must not be one of these vectors.

The total number of nonzero possibilities for the new
column r is 2b+c − 1, since by construction r is allowed
to have b + c nonzero entries. The number of full rank
matrices must therefore be less than

F(a + c, a)(2b+c − 1) (9)

and so the full rank probability must satisfy

p ≤ F(a + c, a)(2b+c − 1)
2a2+b+c(a+1)

(10)

We have found this upper bound useful and surprisingly
accurate.

It is also possible to obtain a lower bound. Note
that any B � 0 necessarily leads to a full rank matrix.
There are 2b − 1 possibilities. For each such choice, D
provides an additional factor of 2c. The number of full
rank matrices must therefore be at least

F(a + c, a)(2b − 1)2c (11)

and so the full rank probability has to satisfy

p ≥ F(a + c, a)(2b − 1)2c

2a2+b+c(a+1)
(12)

The difference between the upper and lower bounds is

Δp =
F(a + c, a)(2c − 1)

2a2+b+c(a+1)
(13)

If c is small compared with the other dimensions, the
bounds should be relatively tight. For an example see
Fig. 3.

We may now consider the general case. Consider
adding to L not one but b columns of the form

⎛⎜⎜⎜⎜⎜⎜⎝
0
x
y

⎞⎟⎟⎟⎟⎟⎟⎠ . (14)

The number of matrices L with linearly independent
columns is still F(a + c, a). We start by considering x � 0
(which yields a lower bound for the probability). The
first new column can be chosen in 2b − 1 ways (for the x
part) times 2c (for the y part). The second column can be
chosen in 2b − 2 ways times 2c; The process is repeated b
times (so that the final B is of size b × b) to yield

F(b, b)2bc. (15)

The full rank probability is therefore bounded by

p ≥ F(a + c, a)F(b, b)2bc

2a2+b2+c(a+b)
(16)
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Fig. 3. Upper and lower bounds for the full rank proba-
bility and approximations found using simulation. Ex-
cept for very small matrix sizes, the bounds are tight and
provide a useful approximation to the full rank proba-
bility.

To obtain an upper bound, observe that the first col-
umn can be chosen in 2b+c − 1 ways, the next one in in
2b+c − 2 ways, and so forth. Repetition of the process b
times leads to a factor of F(b + c, b) and so

p ≤ F(a + c, a)F(b + c, b)
2a2+b2+c(a+b)

(17)

We have found this bound to be both accurate and use-
ful. Plots are given in Fig. 4.

4. CONCLUSIONS

We examined rectangular random binary matrices from
the viewpoint of full rank probability and rank distri-
bution. We have seen, for example, that the most likely
rank of a square random matrix of size n is n − 1. As
known from rateless codes, random matrices with more
rows than columns are very likely to be of full column
rank. We have also obtained the rank distribution of a
rectangular random matrix, that is, the probability of the
rank being equal to a given integer r.

Then we considered random matrices with block-
angular structure, which are of interest in the context
of distributed data storage problems. Our main results
are lower and upper bounds for the full rank probability
of these matrices, assuming a block-diagonal structure
similar to the one in Eq. (2). These results have con-
sequences for the efficient decoding of codes based on
these matrices and for distributed data storage appli-
cations — in which the codewords are spread among a

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  12  14  16  18  20  22  24  26  28  30

Rows

Full rank probability: bound and simulation results (5000 trials)

a=6, b=4 a=12, b=8

Fig. 4. Block-angular case. Upper bound for the full rank
probability and approximations found using simulation.

number of servers but data retrieval has to be carried out
using only the servers that respond to the data queries.
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“Permuting sparse rectangular matrices into block-
diagonal form,” SIAM Journal on Scientific Comput-
ing, vol. 25, no. 6, pp. 1860–1879, 2004.

[5] Ali Pinar, Edmond Chow, and Alex Pothen, “Com-
binatorial algorithms for computing column space
bases that have sparse inverses,” Electronic Trans-
actions on Numerical Analysis, vol. 22, pp. 122–145,
2006.

[6] Roman L. Weil and Paul C. Kettler, “Rearranging
matrices to block-angular form for decomposition
(and other) algortithms,” Management Science, vol.
18, no. 1, pp. 98–108, Sept. 1971.

[7] J. H. van Lint and R. M. Wilson, A Course in Com-
binatorics, Cambridge University Press, Cambridge,
1992.

3183


